Streamgaging Toward the Future: Continuous Monitoring in the Pee Dee Watershed

Waccamaw Water Quality Data Conference 2016

Benjamin Thepaut SAWSC, Conway Field Office, SC

Outline

- What is a Streamgage?
- The Future of Streamgages
- Interact with Streamgages
- Techniques and Methods
- Continuous Nitrate Monitoring

South Atlantic Water Science Center

What is a USGS Streamgage?

A **stream gauge**, **streamgage** or gauging station is a location used by hydrologists or environmental scientists to monitor and test terrestrial bodies of water.

Gage vs Gauge?! -raise your hand 24/7, 365 days of data collection

What is a USGS Streamgage?

Real time data

Streamflow

Water Quality

Meteorological

SW/GW

USGS 02171645 REDIV CANAL AT SANTEE RIVER NR ST STEPHEN, SC

Examples...

The Future of Streamgages: Historic

USGS 02171500 Santee River near Pineville, SC

The Future of Streamgages: Treehouse

USGS 02135200 Pee Dee River at Bucksport, SC (Waccamaw National Wildlife Refuge)

The Future of Streamgages: Rivercam

USGS 02169506 ROCKY BRANCH @ WHALEY ST. AT COLUMBIA, SC

The Future of Streamgages: Fish Tracking

Tagged Fish at Streamgage 02169625 (Congaree National Park)

* Hover over the graph points to see fish quantity and time interval * To see more detail of a specific time period, click and drag mouse over desired graph times (double click graph to reset time frame)

USGS 02169625 CONGAREE RIVER AT CONGAREE NP NEAR GADSDEN, SC

The Future of Streamgages: Continuous Nitrate

USGS 02110500 Waccamaw River near Longs, SC

Interact with Streamgages WaterAlert

"Have Your River Text U!" <u>Threshold Alerting System</u>

WaterNow

"Text Your River" LOL On Demand Information

Interact with Streamgages WaterAlert

1) Go to water.usgs.gov/wateralert

2) Select State and Data Type

 Click on the site for current data and subscription

4) Fill out subscription form

5) Reply to a one time confirmation email

6) Congratulations!!

WaterAlert 02110400 155 cfs, 'BUCK CREEK NEAR LONGS, SC'

USGS WaterAlert <wateralert@usgs.gov> to me 👻

å

Streamflow of 155 cfs exceeds subscriber threshold of 150 at 2016-10-18 05:15:00 EST 02110400 00060 BUCK CREEK NEAR LONGS, SC Notification interval, no more often than: Daily

For Realtime Data at this station: http://waterdata.usgs.gov/nwis/uv/?site_no=02110400

For Subscription Help: http://water.usgs.gov/hns?cxtfd:02110400

To Sign up for New Notifications: http://water.usgs.gov/wateralert

Get the latest data from your mobile phone or email: Text 02110400 to <u>WaterNow@usgs.gov</u> Send email to <u>WaterNow@usgs.gov</u> with Subject: 02110400 *

Send Questions using this link: http://water.usgs.gov/wateralert/feedback/?id=hni-cxtfd

Interact with Streamgages WaterNow

- Send a Text Message or Email to <u>WaterNow@usgs.gov</u> containing the USGS Streamgage Number
- 2) Receive a reply back with Gage Height and River Flow
- 3) Send ? For more parameters or all parameters *
- 4) Reply back with USGS Parameter Number

Techniques and Methods

Stage

Discharge

Ratings; Stage/Discharge

Ratings; Velocity/Discharge

Water Quality

Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting

TNM: Stage

≊USGS

CNWS1 (plotting HGIRG) "Gage 0" Datum: -5.06'

TNM: Discharge

Mechanical Meters

ADCP measures whole channel ADCP uses Bottom Track and GPS to know its position relative to velocity particles measured

TNM: Ratings; Stage/Discharge

Continuously Inferring Flow Data

Discharge (in cubic feet per second)

TNM: Ratings; Index Velocity

Continuously Inferring Flow Data

Index Velocity: To derive a statistically significant relationship between ADVM velocity and ADCP computed velocity. Use this derived equation to compute discharge.

TNM: Water Quality

Continuously Measured: Temperature

Conductivity or Salinity: Electrical Conductance (saltiness)

Turbidity: Concentration of suspended particles (turbid)

pH – Acidic/Neutral/Basic

Dissolved Oxygen: Anoxic, Hypoxic, Super Saturated

Continuous Nitrate Monitoring: Horry County SC Waccamaw River near Longs, SC 02110500

Setting Methods Results Discussion

Setting

Waccamaw River near Longs: USGS 02110500

Crabtree Swamp near Conway postponed; bridge construction.

Setting Waccamaw River near Longs

Watershed has 303-D listings; Eutrophication SCDHEC (Site ID: MD-124) Turbididty, pH rising SCDHEC developing statewide Nutrient (N,P) Criteria for streams and estuaries

Methods

Hach Nitratax

(2mm, 2 beam UV absorbance)

Hach SC200 to Sutron Satlink DCP

(Data Collection Platform)

Analog to <u>SDI-12</u> via Resistor (Serial Digital Interface at 1200 baud)

24V, In Series (Power consumption)

Results

Provisional Data*

Base flow trends

DO/Precip relationship

Comparison Data

Continuous Nitrate Monitoring Results: Environmental Quality Lab, Waccamaw Riverkeeper

Conclusions Need sampling, longer dataset

Table 3. Examples of challenges related to matrix effects, data quality, and logistics that can help determine the appropriate sensor selection.

[Abbreviations: DOC, dissolved organic carbon; mg N/L, milligrams N per liter; mg/L, milligrams per liter; mm, millimeter; n/a, not applicable; NTU, nephelometric turbidity units; NO₃, nitrate; UV, ultraviolet; <, less than; >, greater than]

Туре	Typical values	Approach
		Matrix effects
High suspended sediment con- centration/turbidity	>500 NTU	Use instruments with a shorter path length (that is, <10 mm) or deploy with a filtered flow nath
High DOC concentrations	>5-10 mg/L	Use instruments that measure the full UV spectrum.
	>30 mg/L	Use instruments that measure the full UV spectrum and use a shorter path length (that is, <10 mm).
High bromide concentrations	n/a	Use instruments that measure the full UV spectrum and include bromide compensation in algorithm.
High potential for biofouling	n/a	Use instruments with integrated or third party wipers.
		Data quality
High NO - concentrations	>20 mg N/I	Use instruments with a shorter nath length (that is <10 mm)
Low NO ₃ - detection limit needed	<0.5 mg N/L	Use instruments with a longer path length (that is, 10 mm or longer).
High NO ₃ - accuracy needed	<±0.5 mg N/L	Longer path length (that is, > 10 mm), full spectrum.
		Logistics
Buoy access only	n/a	Use instruments with integrated or third party wipers and can easily be integrated into existing data-collection platforms.
Infrequent site visits	<3-4 weeks	Use instruments with integrated or third party wipers.
Ease of use	n/a	Use instruments with integrated or third party wipers and "plug and play" controllers.

Conclusions

Visit waterdata.usgs.gov for water resource information

WaterAlert, WaterNow for alerts and current conditions

Reach out to your local USGS office for methods

Stay tuned for Nitrate data online!

DO OR DO NOT, THERE IS NO TRY

